

Bidirectional I²C Isolators

1. General Description

The SiS154x devices are high reliability bidirectional isolators that are compatible with I²C interface. The SiS154x devices are safety, insulations withstand voltages (3.75kVrms, 5kVrms), while providing high electromagnetic immunity and low emissions at low power consumption. The I²C clock of the SiS154x is up to 1MHz, and the common-mode transient immunity (CMTI) is up to 150kV/us. Wide supply voltage of the SiS154x device support to connect with most digital interface directly, easy to do the level shift. High system level EMC performance enhances reliability and stability of use.

2. Application

Power over Ethernet

- level shifting
- SMBus, or PMBus interface
- Isolated I²C buses
- Power over Ethernet
- BMS

3. Feature

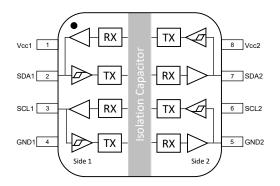
- Bidirectional communication
- Open Drain Output
- With 3.5-mA Side 1 and 30- mA Side 2 sink current capability
- I²C Clock rate: up to 1MHz
- Hot swap protection
- Power supply voltage: 3.0V to 5.5V
- Support different supply voltage in primary side and secondary side.
- CMTI :100kV/us
- Operation temperature: –40°C to +125°C
- Safety certifications:
- 3.75kV_{RMS} isolation for SOP8 package
- 5kV_{RMS} isolation for SOW8 package

4. Device Information

	Part Number	Package	Body Size(NOM)		
	SiS1540S	(C) COD0	4.90mm × 3.90mm		
	SiS1541S	(S) SOP8			
Ī	SiS1540G	(C) COMO	F 05 mans v 7 50 mans		
	SiS1541G	(G) SOW8	5.85mm × 7.50mm		

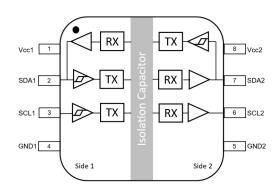
5. Ordering Information

Part Number	Marking	Bidirectional Channel	Unidirectional Channel	Isolation Rating(kV _{RMS})	Package	Packing Form	
SiS1540S	iS1540S	2	0	3.75	SOP8	0000:	
SiS1541S	iS1541S	1	1	3.75	30P6	3000 pieces per reel	
SiS1540G	iS1540G	2	0	F 0	SOW8	1000 min and man mad	
SiS1541G	iS1541G	1	1	5.0	3000	1000 pieces per reel	


6. Absolute Maximum Ratings

Absolu	te maximum natim	ၝ၁			
			MIN	MAX	UNIT
	Voltage	Vcc1, Vcc2	-0.5	+6.0	
		SDA1, SCL1	-0.5	Vcc1 + 0.5 ⁽³⁾	V
		SDA2, SCL2	-0.5	Vcc2 + 0.5 ⁽³⁾	
	Output current SDA1, SCL1 SDA2, SCL2	SDA1, SCL1	-18	18	A
Io		-100	100	mA	
T _{J(MAX)}	Maximum junction temper	erature		150	°C
T _{stg}	Storage temperature		-40	150	°C

www.SyntoneMicro.com 1/9 Ver0.90 Jan,2025



Pin Configuration and Functions SiS1540 SOIC-8 / SOIC-8W Top View

Pin Functions -- SiS1540 Name **Description**` Pin No. Vcc1 1 Supply voltage, side1 2 SDA1 Serial date input / output, side 1 3 SCL1 Serial clock input / output, side 1 4 GND1 Ground, side 1 5 GND2 Ground, side 2 6 SCL2 Serial clock input / output, side 2 7 SDA2 Serial date input / output, side 2 8 Vcc2 Supply Voltage, side 2

SiS1541 SOIC-8 / SOIC-8W Top View

Pin Functions SiS1541						
Pin No.	Name	Description				
1	Vcc1	Supply voltage, side1				
2	SDA1	Serial date input / output, side 1				
3	SCL1	Serial clock input, side 1				
4	GND1	Ground, side 1				
5	GND2	Ground, side 2				
6	SCL2	Serial clock output, side 2				
7	SDA2	Serial date input / output, side 2				
8	Vcc2	Supply Voltage, side 2				

<u>www.SyntoneMicro.com</u> **2 / 9** Ver0.90 Jan,2025

8. Recommended Operating Conditions

		MIN	MAX	UNIT
Vcc1, Vcc2	Supply voltage	3.0	5.5	V
V _{SDA1} , V _{SCL1}	Input and output signal voltages, side 1	0	Vcc1	V
V _{SDA2} , V _{SCL2}	Input and output signal voltages, side 2	0	Vcc2	V
V _{IL1}	Low-level input voltage, side 1	0	0.5	V
V _{IH1}	High-level input voltage, side 1	0.7 × Vcc1	Vcc1	V
V _{IL2}	Low-level input voltage, side 2	0	0.3 × Vcc2	V
V _{IH2}	High-level input voltage, side 2	0.7 × Vcc2	Vcc2	V
I _{OL1}	Output current, side 1	0.5	3	mA
I _{OL2}	Output current, side 2	0.5	30	mA
CL1	Capacitive load, side 1		40	pF
CL2	Capacitive load, side 2		400	pF
T _A	Ambient temperature	-40	125	°C

9. Electrical Characteristics

over recommended operating conditions, unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SIDE 1	(ONLY)				·	
V _{ILT1}	Voltage input threshold low, SDA1 and SCL1		500		700	mV
V_{IHT1}	Voltage input threshold high, SDA1 and SCL1		500		700	mV
V_{HYST1}	Voltage input hysteresis	V _{IHT1} –V _{ILT1}	50			mV
V_{OL1}	Low-level output voltage, SDA1 and SCL1 ⁽¹⁾	$0.5 \text{ mA} \le (I_{SDA1} \text{ and } I_{SCL1}) \le 3.0 \text{ mA}$	600		900	mV
Low-level output voltage to high level input voltage threshold difference, SDA1 and SCL1 ⁽¹⁾⁽²⁾		0.5 mA ≤ (I _{SDA1} and I _{SCL1}) ≤ 3.0 mA	50			mV
SIDE 2	(ONLY)					
V_{ILT2}	Voltage input threshold low, SDA2 and SCL2				0.3 × Vcc2	V
V _{IHT2}	Voltage input threshold high, SDA2 and SCL2		0.7 × Vcc2			V
V _{OL2}	Low-level output voltage, SDA2 and SCL2	0.5 mA ≤ (I _{SDA2} and I _{SCL2}) ≤ 35 mA			0.4	V
вотн ѕ	SIDES					
ΙΙ _L Ι	Input leakage currents, SDA1, SCL1, SDA2, and SCL2	V_{SDA1} , V_{SCL1} = $Vcc1$; V_{SDA2} , V_{SCL2} = $Vcc2$		0.01	10	μА
lcc1	Supply current, side 1	4.5 V ≤ Vcc1, Vcc2 ≤ 5.5 V			12	mA
Icc2	Supply current, side 2	4.5 V ≤ Vcc1, Vcc2 ≤ 5.5 V			12	mA
lcc1	Supply current, side 1	3.0V ≤ Vcc1, Vcc2 ≤ 3.6V,			12	mA
lcc2	Supply current, side 2	3.0V ≤ Vcc1, Vcc2 ≤ 3.6V,			12	mA
CMTI	Common-mode transient immunity	CM _H	25	35		kV/u

www.SyntoneMicro.com 3 / 9 Ver0.90 Jan,2025

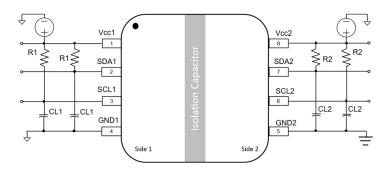
10. Thermal Information

THERMAL METRIC		S(SOP8)	G(SOW8)	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	110	92.5	°C/W

11. Switching Characteristics

over recommended operating conditions, unless otherwise noted

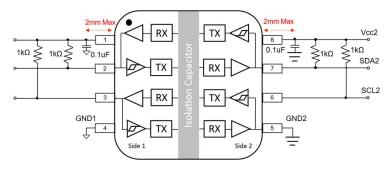
PARAMETER		TEST C	TEST CONDITIONS		TYP	MAX	UNIT
	Frequency					1000	kHz
t _{f1}	Output Signal Fall Time (SDA1, SCL1)	R1 = 1.6kΩ, C1 = 40 pF	0.9 × Vcc1 to 900 mV		14	120	ns
t _{f2}	Output Signal Fall Time (SDA2, SCL2)	R2 = 180 Ω, C2 = 400 pF	0.9× Vcc2 to 0.1 × Vcc2		30	120	ns
3.0V≤Vcc1,	Vcc2≤3.6V						
t _{f1}	Output Signal Fall Time (SDA1, SCL1)	R1 = 1.0kΩ, C1 = 40 pF	0.9 × Vcc1 to 900 mV		14	120	ns
t _{f2}	Output Signal Fall Time (SDA2, SCL2)	R2 = 120 Ω, C2 = 400 pF	0.9× Vcc2 to 0.1 × Vcc2		32	120	ns
PROPAGAT	ΓΙΟΝ DELAY						
t _{PLH1-2}	Low-to-High Propagation Delay, Side 1 to Side 2		0.5 × Vcc1 to 3.5V		48	130	ns
t _{PHL1-2}	High-to-Low Propagation Delay, Side 1 to Side 2		0.5 × Vcc1 to 0.4 V		50	275	ns
PWD ₁₋₂	Pulse Width Distortion	4.5V ≤ Vcc1, Vcc2 ≤ 5.5V.			30	145	ns
t _{PLH2-1} (1)	Low-to-High Propagation Delay, Side 2 to Side 1	R1 = 1.6kΩ, R2 = 180Ω,	0.4 × Vcc2 to 0.7 × Vcc1		63	130	ns
t _{PHL2-1} (1)	High-to-Low Propagation Delay, Side 2 to Side 1	- C1 = C2 = 0pF	0.4 × Vcc2 to 0.9 V		18	155	ns
PWD ₂₋₁	Pulse Width Distortion				54	85	ns
t _{PLH1-2}	Low-to-High Propagation Delay, Side 1 to Side 2		0.50 × Vcc2 to 0.7 × Vcc2		65	125	ns
t _{PHL1-2}	High-to-Low Propagation Delay, Side 1 to Side 2		0.70 to 0.4V		67	340	ns
PWD ₁₋₂	Pulse Width Distortion t _{PLH1-2} - t _{PHL1-2}	3.0V ≤ Vcc1, Vcc2 ≤ 3.6V,			25	215	ns
t _{PLH2-1} ⁽¹⁾	Low-to-High Propagation Delay, Side 2 to Side 1	R1 = $1.0k\Omega$, R2 = 120Ω , C1 = C2 = $0pF$	0.50 × Vcc2 to 0.7 × Vcc1		68	130	ns
t _{PHL2-1} ⁽¹⁾	High-to-Low Propagation Delay, Side 2 to Side 1				23	210	ns
PWD ₂₋₁	Pulse Width Distortion t _{PLH2-1} - t _{PHL2-1}				34	135	ns


www.SyntoneMicro.com 4/9 Ver0.90 Jan,2025

12. ESD Ratings and V_{ISO}

PARAMETER		TEST CONDITIONS		VALUE		UNIT
		TEST CONDITIONS			G	
V _(ESD)	Electrostatic		Bus pins	±8000	±8000	
			All pins	±4000	±4000	
discharge		Charged-device model (CDM), per JEDEC specification		±2000	±2000	V
		Machine Model JEDEC JESD22-A115-A, all pins		±200	±200	
V _{ISO}	Withstand isolation voltage	$V_{TEST} = V_{ISO} = 2500 V_{RMS}$, $t = 60 s$ (qualification); $V_{TEST} = 1.2 \times V_{ISO} = 3000 V_{RMS}$, $t = 1 s$ (100% production)		3750	5000	V_{RMS}

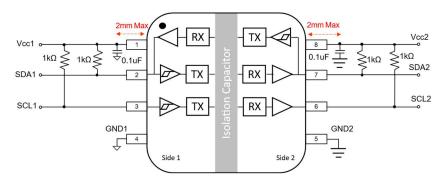
13. Parameter Measurement Information



Test Circuit of SiS154x

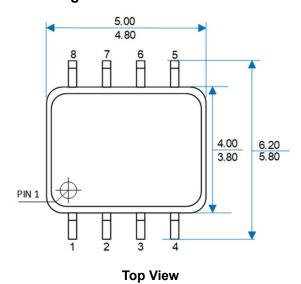
14. Typical Application

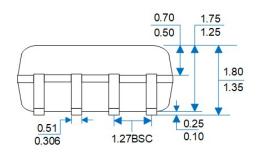
The SiS1540 and SiS1541 isolation ICs provide complete galvanic isolation between two power domains, protecting circuits from high common-mode transients and faults, eliminating ground loops. These devices do not require special power-supply sequencing, the logic levels are set independently on either side by Vcc1 and Vcc2. The SDA1, SCL1, SDA2, SCL2 pins have open-drain outputs, requiring pull-up resistors to their respective supplies for logic-high outputs. The output low voltages are guaranteed for sink currents of up to 35mA for side B, and 3.5mA for side 1. So the minimum pullup resistors on the input lines must be selected in such a way that input current drawn is \leq 3.5mA on side 1 and output current drawn is \leq 35mA on side B. The maximum pull-up resistors on the input lines and output lines depend on the load and rise time requirements on the respective lines. To reduce ripple and the chance of introducing data errors, bypass Vcc1 and Vcc2 with at least $0.1\mu F$ low-ESR ceramic capacitors to GND1 and GND2 respectively. Place the bypass capacitors as close to the power supply input pins as possible.


To reduce ripple and the chance of introducing data errors, bypass Vcc1 and Vcc2 with at least $0.1\mu F$ low-ESR ceramic capacitors to GND1 and GND2 respectively. Place the bypass capacitors as close to the power supply input pins as possible.

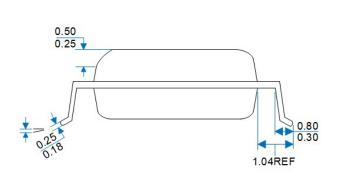
• Typical Application Circuit of SiS1540

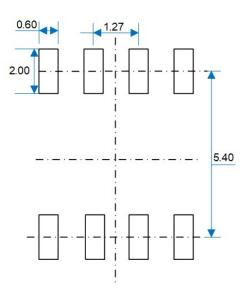
www.SyntoneMicro.com 5 / 9 Ver0.90 Jan,2025



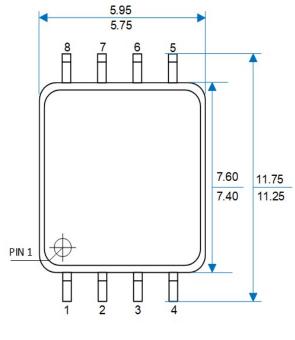

Typical Application Circuit of SiS1541

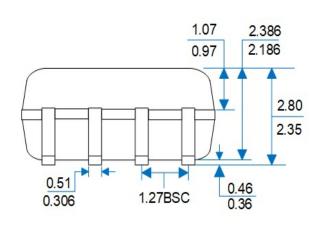
www.SyntoneMicro.com 6 / 9 Ver0.90 Jan,2025



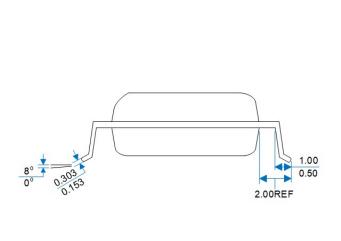

15. Package Outlines: SOP8

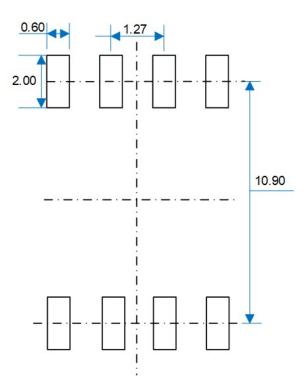
Side View 1


Side View 2


Recommended Land Pattern

www.SyntoneMicro.com 7/9 Ver0.90 Jan,2025


16. Package Outlines: SOW8



Top View

Side View 1

Side View 2

Recommended Land Pattern

www.SyntoneMicro.com 8/9 Ver0.90 Jan,2025

Disclaim

All product specifications and data are subject to change without notice.

For documents and material available from this datasheet, Syntone Microsystems does not warrant or disclosed hereunder.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document or his document or by any conduct of Syntone Microsystems.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless. Customers using or selling Syntone Microsystems products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Syntone Microsystems for any damages arising or resulting from such use or sale. Syntone Microsystems disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Syntone Microsystems' terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

Syntone Microsystems strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all Syntone Microsystems products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

www.SyntoneMicro.com 9 / 9 Ver0.90 Jan,2025